skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramchandran, Maya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Multi-study learning uses multiple training studies, separately trains classifiers on individual studies, and then forms ensembles with weights rewarding members with better cross-study prediction ability. This article considers novel weighting approaches for constructing tree-based ensemble learners in this setting. Using Random Forests as a single-study learner, we perform a comparison of either weighting each forest to form the ensemble, or extracting the individual trees trained by each Random Forest and weighting them directly. We consider weighting approaches that reward cross-study replicability within the training set. We find that incorporating multiple layers of ensembling in the training process increases the robustness of the resulting predictor. Furthermore, we explore the mechanisms by which the ensembling weights correspond to the internal structure of trees to shed light on the important features in determining the relationship between the Random Forests algorithm and the true outcome model. Finally, we apply our approach to genomic datasets and show that our method improves upon the basic multi-study learning paradigm. 
    more » « less